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ABSTRACT

] For the coupon collector's problem, invariance principles for the par-
tial sequence of bonus sums after n coupons as well as for the waiting
times to obtain the bonus sum t are studied through a construction of a
triangular array of martingales related to these sequences and verifying
the invariance principles for these martingales. This approach provides
simpler and neater proofs than given in Rosen (1969, 1970) and strengthens
his convergence of finite dimensional results to those of weak invariance

principles.
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1. INTRODUCTION

Consider a sequence {Q,, N>1} of Coupon collector's situations

(1.1) 2y = {ay(1),py(1), ..., (a (V) ,py (N}, Nz1 ,

N :
where aN(s) and pN(s) (>0) are real numbers and stle(s) =1. Consider

also a (double) sequence { k>1} of (row-wise) independent and identi-

Nk

cally distributed random variables (i.i.d.r.v.), where for each N,

2 = = g <
(1.2} P{INk s} py(s), Isss<N.
Let then
i i ay (g s i T € (e 1)

. 0, otherwise, for k=21 ;
(1.4) - S B ik k21 and 2.=Y, =0
Nn i=1 Nk’ “NO  NO ’

Then, ZNn is termed the bonus sum after n coupons in the collector's
situation QN. If the au(s) are all non-negative, :Nn is non-decreasing
in n(z0), and, for every t=>0, Ilet
(1.5) Uy (t) = max{k: 2., <t}

Then, UN(t) is termed the waiting time to obtain the bonus sum t in the

coupon collector's situtation Q

N
For an arbitrary positive integer b and {nlN € wns ("hN} satisfying

lim inf -1 Lim sup -1 ; : " s

0 < Ao N nlN‘ Mt N "hN < ® - under certain regularity conditions,

Rosen (1969) has established (by very elaborate analysis) the asymptotic

(multi)normality of (the standardized form of) {2 v ¥ e }; in a
IN BN

Nn




follow up ([6]), he has studied parallel results for {uU_ _}. The object of

Nt

the present investigation is to propose and formulate an alternative approach
to this problem based on the weak convergence of a suitably constructed mar-

tingale sequence associated with the Z . This provides a simpler, shorter

Nn

and neater proof of the aforesaid normality and also an invariance principle

for the partial sequence {ZNk’

sequence of waiting times. The basic regularity conditions are outlined in

-
7

Section 2. Asymptotic normality of ZNn

the aid of some recently developed martingale central limit theorems, and

k=n} as well as for the corresponding

is established in Section 3 with

the multi-normality extension is presented in Section 4. Section 5 is

devoted to the (weak) invariance principle for {ZNk’

results for the sequence {UNt’

remarks are made in the concluding section.

2. PRELIMINARY NOTIONS

Note that by (1.2)-(1.4), for every N(=1),

(2.1 EY (s)pN(s)[l-pN(s)]k'l, k>1, EY_.=0 ;

=2Na
Nk s=1"N NO

N n
5 5 * ~ R7 = = 5y <7 =
(2.2) ¢y = EZ, zs=laN(S)““ Py ()] 1, ngl, B2.5=0 .

Let us denote by

(2.3) ¢Nn = XE:]“N(S)(I-C_HPN(S)] . nz0,

t >0} are studied in Section 6.

k<n} and allied

A few




€2.

We

(2

(2.

Note that

4)

5)

Nr

assume that

.0)

1)

lim inf
N

8)

=X

Xe <e

'1, ¥ x>0

-np, (s)
8 Zf 1 N(*')e :

g “(22 12y (SIPy(s)e

N a1

max

(1-e

for

-npN(s))

—npN(s) 2

r=1.2,3,4 -

sup @
{1<S<N NPN(“)} . il

. {lTiﬁNld () /N AN }

N .
[Xs 1“N(“)pN(5)]

and for

Hence, from (2.2) and (2.3), we have

(2-

In

that ¢

(2

Further, using the fact that for

3 N ;
|<»Nn—‘anl = |25=IJN(S) (s)[e

9)

. ¢oN
. 2s=l

fact, if the

-X

(1
10) d;

A~n2

"X)yk o

aN(S)

e Xyex, v x>0,

2 N
Nn 2 =1

-np,,(s)

-np

laN(s)le(s){npN(s)e

> npN(s)

8, (s)o [1-¢

14N|s)pN (s) « anANJ:

0 < x

we obtain that for

0<x

—npN

A2

(s)
}<e v A

are all non-negative then ¢Nntz¢

(s)
)

n(nAN:\

1 ’

b l, O<e

(l-e

]
S

W

M. 0 .

o

-nx

5 {l-pN(S)}n]I

1'N1’

Nn'

we obtain from (2.4) that

y ¥ Rzl N

nx
) =

] > 1
N .Ml.

- (l-x)n

Y n=20,

z
Snx e

N21.

Also,

(-’ ]2k =0°

-nx

noting




= -(n+k)p (s) -np,,(s)y2
1 2 N N N
,(l-zM /N)Zn {l N(s)p (s)e A N(s)p (s)e ] }
” —(n+k)pN(s) -(n-k)pN(s)
(2.11)  =(1-5N"Im )Zk 0{2 Ay (5)py (e [1-e 1}
-(2n-1)M_ /2N L (n+l)p (8)
A s 1 i N 2. e N
(1-LN7 M e [ (n 1)/2|{S=IJN(.)pN(>)[1 e |
Now, by (2.6), (2.7) and (2.8), sz{s by (s)>e/N}PN (s]p (s) > N,XN . N(s)p (s)-€
- (n+1)py ()
¥€>0, and noting that for pV(s) >e/N and n/N>n>0, l-e 2z cle,n)>0,

we obtain from (2.11) that if

_ lim inf -1 _ lim sup o
{2.12) 0 < N N nl s Hjinaes N n < o
lim inf 2 ¢
then N (dNn/nANZ) > 0. Thus, we have
% lim inf lim sup
(2.13) 2 (d R Sl ! (1 ALY <=,

when (2.6)-(2.8) and (2.12) hold.
We are primarily concerned here with the limiting behavior of the partial

: -1 n :
k<n). Since dNnaV(s), 1 <s<N remain invariant under
i

=1 ;
sequence dNn (“Nk_¢Nk’

any scalar multiplication, we may without any loss of generality set

-1¢N & N
) = ¥ ~ SRy
(2,14} I\N2 = N EszldN(s) 1 , for every N
Then, by (2.9), (2.13) and (2.14), we have Ko P ]¢* o |} > 0, so that
b sk SR kot fe ’ Nn{l<k<n''Nk "Nk R '

we may equivalently consider the partial sequence ksn). In the

=1 /4
(< O A
an Nk Pk
remaining of this section, we consider a basic lemma, to be used repeatedly in

subsequent sections. Let QNk :pN(lNu\. k=21 and let gV“(Y Vs

Nk Nk

u=l,...,p(22) be such that

» 18 max ) omax g L T2 g . sup <
et x~u~p{l-s-N{*Nu(”N‘“"“N(”",} i TEIRI I T




EA
:

(2.16) X

N el sup -1 o
15u5p{zs=1|gNu("’N(5)’pN(””lJMN,4’ NN Mya©

Note that (2.15) and (2.16) insure that

max

¥ N

< MN,S where MN,S SLN,SMN,A ;

Lemma 2.1. Under (2.6), (2.15) and (2.16), for every O =\b'<xﬁ S <\b £n,

P p
Ea=ha) l l \v "Nv = [ iEgNu(YNv ‘QVv )
u=1 u

+O(N” Mp sy LYETM T

=7 -1
(2.19) Cov[gNl(YNvl,QN\)l),gNZ(YNVZ,QNV’))]-O(N My VN M D)

1 2

14 = -1 3
(2.20) Viey; Oy, Quo )17 OCIN My o] A TOMy 071)

Proof. We shall only prove (2.18); the others follow by similar arguments.

Note that

P P
T Topay G 3= 1 T M lags,domytsy)
u=1 u u u=1

=Y. P(S ) P
(2.21) = ) ﬁ{gNu(uN(su).pN(s“))pN(su)e ilaols [1+O(N l)l}(h.\’ (2.6})

1ss,#...#%25 <M u=1l
p

1

) TPT{ TPy P-1yp '
= B (A0S IS iDL (S, e }+U(N My 4d s '
lﬁslt...¢SpSN - Nu®" N "u "N u N""u N, 4 1

by (2.6) and (2.16). Similarly, for ecach u(= 1,...,p),

E—




=M o (5] o
R am™W. ),

Q N,4

T N
(2.22) Eg (Y )=l o 8y (AN (8) Py ())py(s)e

Nv Nv
u u

where, by (2.6) and (2.16), the first term on the right hand side of (2.22)

is O(N_lb ). The product of the factors of the first erm in (2.22)
N, 4 P

nIP]

involves Np terms where as (2.21) involves terms; by (2.15) and

(2.16), the contribution of these NP -N[p] terms is O(M °MR_I-N_p).

N,3 N,4
Hence, the proof follows from (2.21)-(2.22). For p=2, Np -N[p] =N
N 2, ~V*,)py(s) 2
and J__ 8y (@ (5),p(5)) gy, (ay(s),py(s))py(s)e = 0(N' 7).

~

N
Es=llgN1(aN(s),pN(s))gNz(aNLs),pN(s))I} = 0(N""+My o), so that (2.19)

follows on parallel lines. QAE-DE

3. ASYMPTOTIC NORMALITY OF {dé (

|
n “Nn-¢Nn)}

The main theorem of this section if the following.

Theorem 3.1. Under (2.6)-(2.8) and (2.12),

=1 .
(3.1) Ldy, (Zyo b)) N(0,1)

Nn

Proof. Unlike the approaches of Baum and Billingley (1965) and Rosen
(1969, 1970), our proof rests on a construction of a (triangular array of)

{“Nn}' Let ka be the sigma-field generated by

{YNj’ j<k}, k21, and let BNO be the trivial signma-field. Then, for

martingales related to

every N, ka is non-decreasing. For every N, n(>1), we define
i

1Y - k-1 Tk (n)
> 5 = s
(3.2) X’ =¥ (1900 e y Qe =Pyl » k=13 K5 =0
¢ -np,, (s)
(n) _¢N P . B . (n)
& & p . S X - z =
(3.3) ENk _Zs=ldN(5)le‘)o ]14pN(s)] o e Ly EN0 0,

A —



and consider the sequence

(3.4) xlfu':) - "152) -E (x(“)lls\Ik )
O -0 + B (ea ), ko1 3 0.
Then, on denoting by
(3.5 ST RS wa e g =2" B P
we obtain from (3.2)-(3.5) that
(3.6) E(n) -ZzzlaN(s)e~npN(S){[1+pN(>)] , k=20
L3453 Eéi) i z]i\’=1Yr\Jic-nQNi“”Qr\n)k . QNi(hQNi}i-ll SR,
(3.8) BE B 3 = L ¥ ka1,
so that for every N, n(=1), {Sé:), BNk; k=8} is a martingale. From

(2.6) and (3.6), it readily follows that

(3.9) IEég’-cp = 0(1) , for every N,n

an

Qs - "
n N =1y N
Also, note that zizl'YNiQNie ‘1(I+QNi)1 [ :X?:IIYNiqui\:ZS:l

aN(s)le(s}

. 2 5 5 5 : -nx n. 2

< MIAN7'VM1‘ by (2.6) and (2.14), while for xe¢ (0,1), 12e (1+x) =2 1-nx",
(n) =

so that under (2.6) and (2.12), we have from (3.7) that -Z,, *}

‘ N Nn =

an
bounded, with probability one. Thus, by (2.13), (2.14) and the above, we
conclude that for every € >0, there exists an NO(L), such that under

(2.6)-(2.8) and (2.12),

5 (n) " b
(3.10) l{d ls _ \ml’“ 0, VNN, (e)

Nn




Consequently, it suffices to show that under (2.6)-(2.8) and (2.12),

= 3(n)
(3.11) L(danV ) > N(0,1)
Now, for the martingale-difference array {le éﬁ), k<n}, by (3.4),
(n) ()
¥ <
(3.12) |x b<br, G| +Z NleNv , I<kzna,
(n) N aaks max
where |E.71s] _ la (s)lp (s sMine ~m . Also, |V |s, _ la.(s)] =

0N = 0(dy,)» by (2.7), (2.13) and (2.14). Finally, ( - il \V|th]

i
\ zz %) s
: aN(sjle(s, <M/AL, ~M[, ¥ k=1. Hence, for every €>0, there exists

an No(ej, such that

) max (n) ] = e,
(3.13) Lh<annH |>e[ 0, ¥N2MN(e) ;

the above equation also insures that

max

(n)l
k<n Nn

(3.14) IX is uniformly bounded in L norm .

2

Further, by (3.4)-(3.8), b([S(n)] = zk 1F([X(n)] ), and some routine

steps leads us to

=2 = ()2 5 ; A
(315) dNnE,([SNn = 1 as N

Thus, by virtue of (3.13)-(3.15) and (3.8), we are in a position to use
the recently developed central limit theoresm by Dvoretzky (1972), Scott

(1973) and McLeish (1974), and to prove (3.11), it suffices to show that

(3.16) d"{ [8(") (f(k )l}

where




-10-

(XM 128, ) =vEM (8

= (n) _
(3.17) KNk

Nk-1 Nk - l

-2np_ (s)

S(s)py(s)e [1epy ()12 5D

=1 a

s=1 N
k-1,2 -2nQuy 2(k-1)

2 Xv=1 N © (“QN\))

"Q k-1.2

(n) k- 1 N sic=1. 2 e
sl (ool i R R s R S

By steps similar to those after (3.,12), it follows that the Eéﬂ)
-
all bounded with probability 1, while, by (2.13)-(2.14), dN; = @{n

Hence, to prove (3.16), it suffices to show that

’ max p(n) ,(n) . =
(3.18) lgk<q$nlcOv(ZNk ,L’Nq | *0 as n+= .
b
i : Ry ~2nQy 2(k-1) :
Defining gNu(\Nv’QNv] as YNvQNve (I+QNv] (or YNvQNve

it readily follows that (2.15)-(2.16) hold with M

) 5

N, 3" 0(1) (or O(N

~M (or M7, and hence, (3.18) can be proved directly by repeated use of

MM 4 1 1
(nle(n)

(2.18)-(2.20) for the individual terms in the expansion of eNk Ng

Q.E.D
We may remark that intuitively one may attempt to work with the

tive construction: Y, =Y

Nk = Nk = li(YNk'BNk-l NO

n o _¢n N k-1,
(3.19) N ™ Lot Vi ™ bt Tk = Lm0 A8) + Lo ¥y R )

_B2

. * n .
Cyn~Pn) =1 (MR Y Qg = BV Q]

LS

Whereas the asymptotic normality of iN S\ May be proved along the

; s = : : i
lines as in Sén)’ the second term on the right hand side of (3.19)
i

-nQ

are

_1).

Nv

-],
) and

by (3.

alterna-

e K&, ? = (0. Then, one would have

sdame

i1s not

1
generally op(n‘), so that this particular construction may not be very

. : o T (] e
helpful for the desired normality of dNn(”Nn QNn)

(1+Qy )



4. CONVERGENCE OF FINITE DIMENSIONAL DISTRIBUTIONS

For an arbitrary positive integer b, consider a sequence of posi-

tive integers {nlN s iee <nbN} where
lim inf -1 lim sup,,-1
(4.1) g R A N T

We are basically interested in the asymptotic multinormality of

(4.2) N [z -¢ s halt -¢ -
anN anN Nnhn NnbN

when (2.6)-(2.8) and (4.1) hold, and we impose (2.14) without any loss of

~|

generality. Let us define Z = ((qu,N))k,«Fl,...,b by

N

N Kk=g(=1,.. .,b}

TkN

<

-n NPN(S) -nkNpN(S)

-1¢N 25 q o,
N ZszlaN(s)c (1-e )

1

H ~f B (3] -n_p.(s)
O 651 kNEN ](EN qQNFN

N S S e ~ ~
"N Es:lﬂN(S)pN(b)e S:ldN(h)pN(5)e :

l1sk<qsb,

(4.3) Isgeaksh .

Loqk yN’

rcalli : :C ES =N ’ . Al AN (L=
Recalling that a vector L"N is b(EN ZN) 1f for every A=z0, A QN EN)

R NI(O,)\‘ZN)\), we have the following.

Theorem 4.1. Under (2.6)-(2.8) and (4.1)

1
- < g « >
(4.4) LN*[Zgy Oy » 13 <B]) > Ny (0,]0)

NN iN




Proof. Define X0, S™ k>0, as in Section 3. Let then

Nk * "Nk ’
{‘(rgt)’ 0<k<n,
g g(n) k ¢(n)

5 = = >
(4.5) Nk S Lo . k2e

0, k>n;

. that &M _g(m) I g(n) _gn) A
Note that ka Nk for k<n and SNR Nn for k>n. Thus, pro-
ceeding as in (3.9)-(3.10), under (4.1), it suffices to show that

(n
N-Z(S v k= <ibiE s o (0,2 ). For this purpose, consider an
NnJN b"~’&N

arbitrary linear compound (where ) =0)

(n..) n
) b -%52° jN7 _ [ -%p BN ¢b - "bNo« N
(4.0)  Li_ AN SNan =N j=1>‘jXNI\ R e
* b /\(an)
where xNk-XJ.:lAJ.xNk , k>1. Note that by (3.2), (3.4) and (4.5),
(xﬁk[BNk-l) =0, V k=1, and, we may virtually repeat the proof of Theorem
3.1 [viz., (3.12)-(3.18)] with xNk] being replaced by i;k; the details

are omitted. QLE D,
The prescribed martingale approach provides a solution, considerably

shorter and neater than the one given in Rosen (1969).

5. AN _INVARIANCE PRINCIPLE FOR THE BONUS SUM PROCESS

For an arbitrary T(0<T<®), let J=[0,T], and for 0<x<y<T,
define
-Nyp,.(s) -Nxp,, (s)
)
X,y) = E 12 (s)c N [1-e 5 ]
-Nxp,, (s) -Nyp,,(s)
N £ i N ! N
el - X zszlaN(b)pN(s)c J[y\ I r\(s)p (s)e X

. o "l ‘




= P

and let YN(x,y) =YN(y,x) for 0<sy<x<T. Proceeding as in (2.10)-(2.11),

it can be shown that YN(x,y) is (uniformly in N) a continuous function

2>
of (x,y)«J”. Let us then define
(5.2) YO(X ¥) =%, 00x) ey (v, ¥) = 2y 00, y) » ¥ (x,y) € 72
o &= Pl » N ’ N 3’ N ’ ’ ’ - % .

5
It follows from (5.1) and (5.2) that Yg(x,y) >0, V (x,y)eJ”, and, more-
over, by using (2.6)-(2.8) and (2.14), it follows by some standard steps
that there exists a positive constant K(<®), depending only on T and

the M.1 in (2.6)-(2.8), such that

sup 0

3
(5.3) i e ) Kly-x| , ¥(x,y)ed.

Let {QN = [CN(x), xeJ]} be a sequence of (independent) Gaussian
-
functions on J, where EYN(x)= 0 and EYN(X)YN(y) =YN(x,y), ¥ (X.y) eJ .
Then E[Z(¥) - 5y (014 = 2(E[gy(v) - £ 0017 = 20v0(x, 017 = 2k (y-x) 2
en  E{Z, (y N (X = N O N ) =2y (x,y = 2K (y-x),
%
¥(x,y) ¢J7, so that by the Kolmogorov existence theorem, for every N,
CN belongs to the space C[J], with probability 1.
Now, for every N, consider the sample process WN ={WN(x). x€J},

where

- ’12 .
(5.4) Wy () = N xed,

Zninxg " ONpnx))
[s] being the largest integer =<=s. Then, WN belongs to the space D[J],

1
endowed with the Skorokhod Jl—topology.

Theorem 5.1. Under (2.6)-(2.8) and (2.14), {WV} and {LN} are convergent-

i

equivalent in law, in the J)- topology on D[J].




e

Proof. We need to show that (a) the finite dimensional distributions of

) (WN} are convergent equivalent to the corresponding ones of {CN}, and

(b) that {WN} is tight. Now, (a) follows readily from Theorem 4.1. Also,

by (1.4) and (5.5), WN(O) =0, with probability 1, V¥V N. Hence, to prove
(b), it suffices to show that for every €>0 and n>0, there exists a

§: 0<§<T and an interger NO, such that for every xe«¢J and NizNO,

(5.5) P{supHW (y) - W (x)[ > (x-8) vO] >e} < nd/T .

: . ~[Nx]
Suppose that in (5.4), we replace ZN]N] ¢N[Nx] by bN[N B xedJ, and

denote the resulting process by W Then, proceeding as in (3.9)-(3.10),

N’
it follows that for every €' >0,

lim =
(5.6) ‘Nf:p {““p]w (0 -W ()] >e } =0 .

Hence, it suffices to prove (5.5) with WN replacing WN. Towards this

note that

(n) 3(K) (n) 3(n) (n) 50 "
(5.7) N~ (s Syk ) = (s Sy ) * (s Sgk ) s Y k=20,

Since (Sé:), BNk; k>1} is a martingale, by (3.12), (3.14) and (3.19) ]
[le (n) (n) 2
P Bk 1 /dninx]

tion to use Theorem 2 of Scott (1973) and this, along with (2.13) and (2.14),

D
[insuring that 1, VxeJ], we are in a posi-
implies that for every €>0 and n>0, there exist a &: 0<8<M and an

NO’ such that for N‘-NO, ne= [Nx}, xed

max "‘1 ,(n) .(n) w 3 . < }
(5.8) p{n-SN«k«n L Sk | > % L} < 33 N6 .

Also, if we choose &(>0) so small that 6M1< 1, then for [n-k] <N
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(n_k){l?Z:N pN(s)}s 6M1< 1, by (2.6). Hence, for n=>k = (n-6N) A0, we

obtain from (3.7) that

k
( 500 5 ;
(5)) N (Q —g ) Zl[gn,k,l(YNl,QNl) -Lgn,}\,l(YNl’QNl)] ’

where

(5.10) g\ ;(a.b) =N % (1-e” BRI 1 ED ¥ b P eyt Y

l1<ic<ksnsNt

Note that by (2.6)-(2.7), for every n<Nt, (2.15)-(2.17) hold with

=) -1 —‘z max 4 i g - -'3 ar
MN,S = O(N " (n-k)N lgSSNIaN(s)l) = [0(1)][(n-K)/NT, Mn,4 =N “(n-k)*0(1)
and MN g N-z(n-k)z'ﬂ(l). Hence, by (2.19)-(2.10) and (5.9)-(5.10), we have
(5.11) ECNE S P ewt v o1

V k: NT2n2k=2(n- N) vO ,

where M*(<®) does not depend on §. By (5.11) and Theorem 12.2 of

Billingsley (1968, p. 94), we conclude that for every n=<TN, t <o,

o
-

(5.12) P{n_é";;’("k(n N lq“‘) “”1> e} e TR et Pxe,

and K* does not depend on € and §. For every €>0, n>0 and T<x,
we choose &§(>0) so small that 8§ <ne“/2K"T, so that the right hand side 1

of (5.12) is <%nd8/T. From (5.8) and (5.12), we obtain that

(5.13) P{n-g‘N“\"k,n |q\g:‘]) Sk ’| \(}' n&/T, ¥ NT=n -k > (n- N)VO ,

and this completes the proof of (5.5) (for QN). QB D5
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6. INVARIANCE PRINCIPLE FOR THE WAITING TIME PROCESS

We define the waiting times llN(t). t>0 as in (1.5). Note that here

all the HN(S) are assumed to be non-negative, so that :Vk is 7‘ in
. i

k(>0). Here also we make the assumptions (2.6)-(2.8) as well as the con-

= 1
vention (2.14) i.e., N 1AN2~1, so that ()\ANI.‘AJZ’VI' We assume that
(6.1) il SR REE

N+ N1 1

max
1<s<

e '
Note that by (2.14) and (2.7), - ‘]aV(S)[ = 0(1), so that N 2|y

-
k=1 are all uniformly asymptotically (as N - ®) negligible. Further, by

definition ZNn-zNANl ¥ n=>1, so that in (1.5), we are only interested in

the domain t <NA.. Let us define ¢ n>0 as in (2.3) and introduce the

1
sequence  ay = {aV(x): 0<x<NA} by letting

Nn’

(6.2) ¢NaN(X) = X, Osx «NA1
Note that by (2.3) and (6.2), aN(x) is non-decreasing and
-1
N -a,, (X)p,, (S)
d N N
3 ' P s = c 3 s) e

(6.3) aN(x) . aN(x) gzldN(S)pN(S)t 5

N -0, (x)p (sfl

" 4 .. L 2 S s N

(6.4)  ag(x) = g ay(x) = [ag(x)] z_dN(h)pN(s)L

: |

Thus, by steps similar to those in (2.10)-(2.11), it can be shown that under

S

(2.6)-(2.8), (2.14) and (6.1}, for x=Nu, G<uc<k,, aﬁ(Nu) and a''(Nu) are
1 N N

continuous functions of u and, further,

16.5) al(Nu) =0 (1) and o'(Nu) =0 (N'l); 0 exact order .
N e N ¢ ¢

Let us also define YN(x.y) as in (5.1) and set

————ll
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(6.6) Bi(Nu)= [YN(aN(Nu), (xN(Nu))llu?;,(Nu)]2 , 0<u \Al

Then, note that by (6.5), for every u« (0,A;) and fixed v({vf -

N—?u),

1 1
(6.7) N'ZlaN(Nu+Nl\)) - ay (Nu) |

"

2 X 1
vaé(Nu)+~u v“NZag(Nu-*Gsz) (0<B<1)
\

1

\)a&(Nu) +0(N 9

fi

Further, by (6.2) and (1.5), for every v and wue (O,Al),

(6.8) P{UN(Nu) >aN(Nu+N""m)} =P{Z Nu}

NaN(NmN‘zv) :
_l
= PN

& 1
= l‘{WN(N laN(Nu+N’\))) <-v} , by (6.2),

“NaN(Nu+N5v)_¢NaN(Nu+N5v)].‘N lNu"(bNaN(Nlel\))l

K), @&s

. 1
where WN(-) is defined by (5.4), and by (6.7), N l[aN(Nu4sz]~aN(Nu)l » 0

as N »>o V¥V uc (O,A]). Hence, by Theorem 5.1 [viz., (5.5)], the right hand

side of (6.8) is convergent equivalent to

(6.9) P{WN(N'1a¢Nu))« -v} , for every finite v .

On the other hand, for every finite Vv and u (O,Al). by (6.7) and (6.8),

1
y T2 s 5
P{N |llN(Nu] aN(Nun/BN(Nu) v}
1
(6.10) =P{UN(Nu)»aN(NuwN“BN(Nu)vi

= P{UN(NU)>aN(Nu+NuﬁN(Nu)v/u§(Nu)+U[l)\}

-1 L = -
~p Y N N ) <=\ ) /at (1 N
l(WN(N mN(Nu*N‘vBN(\u)/uN(\u)rt(ll) \GN(Nul‘xN(\u]o((\

1

.‘l}
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ik
[ - p ' - 2 -
Now, by (5.1) and (6.4), (6.6), BN(Nu)/aN(Nu) YN(aN(Nu), aN(Nu)), and
by (2.10) and (5.1), it is 0(l). Hence, by the convergence equivalence of

(6.8)-(6.9), the right hand side of (6.10) is convergent equivalent to

1
(6.11) P{WN(N-laN(uN))/YJ(QN(Nu), ay (V) < v}
-V ~
% e ex (—"tz)dt e T ex (—“tz)dt
V2 Ro= R v2m |, Par 2 ’

by Theorem 5.1. Hence, we conclude that
e
(6.12) L(N “[UN(Nu)-aN(Nu)]/BN(Nu)) SN Sy gy (O,Al)

Let J* = [0,T* for some 0 <T* <A and consider a sequence of sto-
1 {

chastic processes W; = {Wﬁ(u), ueJ*}, N>1, where
1
2 * o N E _ ' <y < TF
(6.13) W@ = N {UN(Nu) aN(Nu)}/aN(Nu) TR A e

Let us define YN(.,) as in (5.1) and aN(.) as in (6.2), and let

"

1 - 1
¢ s &= = v Ve J*~
(6.14) YN(u,\) YN(N aN(Nu) ' N aN(Nv)) g Ve J*-,
Since aN(x) is a monotonic transformation of x, defining {z.} as in

N

after (5.3), by transformation of the time-parameter, we obtain a sequence

{CQ} of Gaussian functions where CQ = {Cﬁ(u), ueJ*} with EE;(U) = 0
) i

P ¥ * - * (.*
and L”N(U)KN(v) YN(u,v), Y u,ved

Theorem 6.1 Under (2.6)-(2.8), (2.14) and (6.1), for every T* <Al. {Wg}

and {Cﬁ} are convergent equivalent in law.

Proof. For every given m(>1) and 0 Uy Sieey SR T*, wvirtually repeating

the steps (0.8)-(0.11), but working with the vector case, it follows that

el




D
(6.15) lw&‘“x)""’wN(”m)] £ [Cﬁ(ul),.‘.,t*(um)l

Also, recall that by (1.5)

(6.16) z T8 IR , ¥YeEz0 .
NU () NU () NU (t)+1

LT e TR 6 5 sup _ max 2 5 ok
where by (2.7) and (2.14), k“l‘YNkI 'l*sﬁNlaN(s)| O(N“). Hence,

- 3] sup -1, P .
(6.17) N {U(J*IN MNUN(NU)-ul} 0 as N+«

On the other hand, by Theorem 5.1 and (6.2),

SUP[N_I"

p .
geJ* ~NaN(u)_ ul >0, as N>,

(6.18)

By (6.5), (6.17) and (6.18), it follows by some standard steps that

sup

=1 ol R
U'J*IN Uy (Nu) - N aN(Nu)\ 0

(6.19)

Having proved this, we may proceed along the lines of the proof of Theorem
17.3 of Billingsley (1968, p. 149) and show that the weak convergent equiva-

lence of {WN} and {LN} in Theorem 5.1 implies the same for {W§} and

7. SOME_CONCLUDING REMARKS

Parallel to (6.12), Rosen (1970) has obtained the asymptotic normality
along with the asymptotic equivalence of aN(Nu) and EUV(Nu) as well as

¥ 4
of B;(Nu) and Var[UN(Nu)I. However, his conditions (2.7)-(2.8) are some-

what more restrictive than ours and our Theorem 5.1 provides us with Theorem
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6.1 under no entra conditions — Rosen's approach presumably encouters consi-
derable difficulties in this respect, Secondly, in his Theorems 2 and 3,
Rosen (1969) has studied the convergence of f.d.d.'s of {WN} to those of
{QN} under additional conditions ([viz., his (5.4), (5.10)] which insures
tha? YN(x,y) > y(x,y) as N+, V¥ (x,y)e Jz, Under his setup, using

his Lemma 3.17, one can also prove the tightness of {WN} (by using Theorem
12.2 of Billingsley (1968)) provided one assumes (in our notations) that for
some r>2, ANr/A;é2 = 0L W N‘?NO. In our approach, these additional
conditions do not appear to be necessary. Moreover, contrasted with his
Hilbert space approach, the present one appears to be more elementary too.
Finally, through the pioneering work of Rosen (1972a,b), the coupon collec-
tor's problem occupies a prominent place in the development of the asymptotic
theory of finite population sampling (without replacement) with varying pro-

babilities. It is hoped that the results of the present paper will lead to

more work in this potential area.
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